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ABSTRACT

Input/Output Cost Analysis involves decompositions of the quadratic cost function
into contributions from each stochastic input and each weighted output. In the past, these
suboptimal cost decomposition methods of sensor and actuator selection (SAS) have
been used to locate perfect (infinite bandwidth) sensors and actuators on large scale
systems. This paper extends these ideas to the more practical case of imperfect actuators
and sensors with dynamics of their own. NASA’s SCOLE examples demonstrate that
sensor and actuator dynamics affect the optimal selection and plucement of sensors and

actiedlors.
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1.0 INTRODUCTION

The objective of this paper is to develop and evaluate a method for the selection of
sensors and actuators in the control of finite-dimensional linear systems using imperfect
sensors and actuators -- devices which do not provide instantaneous responses, but have
nontrivial dynamics of their own. In addition, the plant noise and the measurement noise
is assumed correlated. This important case allows the use of accelerometers as sensors
(this always yields correlated plant and measurement noise). Application of the
generalized method to practical control problems demonstrates that correlatedness of the
noise and the dynamics of the actuator and sensor devices can significantly affect the

optimal selection of both the number and location of sensors and actuators.

Consider as a starting point the following familiar dynamic system model:

)'cp = Apx,(t) + BL[f(t) + w(t)] (1.1a)
yp(t) = Cpxp([) , Z(t) = Mpxp(t) + v(t) (1.1b)

E{w®OW'(1)) =8(t-n)W , E (v()vT(D)} = S(t=1)V , E {wvT(1)} = Stt-1)U(1.1¢)

where x, € R™ fe R™ weR™ zv,e R™ and (A, C,) observable, (A,B)
controllable and (Ap,Mp) detectable. The vectors w(t) and v(t) are respectively zero

mean white noise characterizations of the actuator and sensor noise.

In control of large space structures, the locations of sensors and actuators becomes a
critically significant "degree of freedom" in control design [14, 20]. Among over 60
more recent contributions to the SAS problem, only [4], [7], [10], [11], and [12] consider
noisy actuators (W, V nonzero). In all cases, the disturbances are modelled as Gaussian,
white, and uncorrelated (W, V diagonal, U = 0). Most of the SAS literature takes no
account of actuator or sensor dynamics. Two exceptions are McClamrock [19], and

Howell and Baxter, [6]. In [1] the authors extend the cost decomposition approach [2] to
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accommodate noise correlation between sensor and actuator noise sources (W, V not
diagonal, U # 0). A key conclusion in [1] is that the proper sensor/actuator selection and
placement can be drastically affected by noise correlation. For example, the deletion of a
noise source (by making an actuator or sensor noise free) may degrade performance

contrary to the usual expectations when noise sources are uncorrelated.

Very fast actuator dynamics may be neglected in stability considerations, [9]. A
more thorough discussion of the effect of actuator dynamics is given by Goh and
Caughey [8]. The analysis of [8] and [9] demonstrates that plant frequencies occurring
above the actuator bandwidth can lead to closed loop instability, even for co-located
sensors and actuators. Goh and Caughey do not address the problem of selection of

dynamic actuators. That is the goal of this paper.

This paper is organized as follows. First the system model is augmented to include
sensor and actuator dynamics. The closed-loop input and output costs are then developed
for the fully augmented system, and they are used to define expressions which reflect the
effectiveness of each dynamic actuator or sensor in minimizing the cost function.
Finally, the method is illustrated by application both to small scale numerical examples
and to NASA’s SCOLE flexible space structure model. It is found that in the selection of

noisy actuators and sensors, finite Jdynamics can significantly affect selection results.

2.0 MODELING DYNAMIC ACTUATORS AND SENSORS

In [2] the results of Closed-Loop Input/Qutput Cost Analysis (CIOCA) were
developed and applied to the Sensor and Actuator Selection problem (SAS) for systems
of the form (1.1) under closed-loop control. In [1] the control f(t) is the vector of optimal

state estimate feedback controls:
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f(®) =Gx (1), G=-R'BK. (2.1a)
X = ApX (1) + Byf(t) + Flz(t) ~ Mpx (0], F=[PM] + B,UJV!, (2.1b)
0=KA,+A K -KBR'BK +CJQC, (2.2a)
0=[A,-B,UV'M,P+ P[A,~B,UV'M]T - PM, vTiM P (2.2b)

T WiTp T

+B,WB, -B,UV'UTB]

which minimizes the cost function
V =E_(lly,0I*Q + llul’R} , E_21im E[] 2.3)
t—yoo

where x_ € R™ is the vector of state estimates. The conclusion from [1] for this problem

(1.1), (2.1) (2.2) is that when U#0, the sensor/actuator selection results can be

drastically different.

2.1 Adding Actuator Dynamics
First the system (1.1) is augmented to include stable, observable, controllable

actuator dynamics of arbitrary order.

Xa = AX, + B,(u+w,), (A,,B,) controllable (2.4a)

f=C,x, (A,C,observable, x,e R™ fe R™ (2.4b)
a a a

Figure 2.1 presents schematic representations for actuator models of varying degrees of
complexity; Figure 2.1a represents the non-dynamic actuator, while Figure 2.1b
represents the general model for a dynamic actuator with white noise. Note that for the
non-dynamic actuator the noise w(t) is purely additive with the input u(t). In the case of

dynamic actuators the analyst may consider the actuator’s output (into the system) to
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Figure 2.1: Actuator Models
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include additive actuator output noise wgt), or actuator command noise w,(t) which is
filtered by the dynamics of the actuator, or both. Both types of noise are assumed

possible in our development.

Augmenting the system states x, of the original system (2.1) with a vector of

actuator states x,, we obtain:

)'(=A)H—Bu+Dw,y=Cx,z=M)nH-v=zp (2.5a)
Xp Yo Wi A, B,C, (B, 0
X= xa 7y= f ,W= wu ’Az 0 Aa ) D= O Ba ’

Wi U

W = »
Un W

, C=

¢, 0 0 T FMJ
oc| Bp| M=o

where f = C.x, , (A,, C,) is observable, and Re[Ki(Aa)} <0, i=1,2,--+ n, (A,B)

u

is controllable.

First note that since Xp is observable from Ypr (e., (Ap,Cp) is observable) and x, is
observable from f (i.e., (A,,C,) is observable) then from the definitions (2.5) x must be

observable from y, that is:
(A,C) is observable (2.6a)

Also note that the actuator dynamics are assumed stable, so that the system (2.1) has
not peen augmented with any unstable states. Therefore, detectability of (A M)

together with stable A, yields

(AM) detectable. (2.6b)
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Finally, Theorem 1 states the conditions for controllability of the system (2.1)
augmented with actuator dynamics (2.5). Proof of the theorem is contained in the

Appendix.
Theorem 1

Consider the controllable system

)'(p = Apx, + By(f+wp) ,  (A,,Bp) controllable (2.7a)

x,€ R™™ (2.7b)
augmented with controllable and observable actuator dynamics of arbitrary order
X, = A, X, + B,(u+w,), (A,B,) controllable (2.7¢)
f=C,x, (A,C, observable, x,e R™, fe R™ (2.7d)
to form the composite system

x=Ax+Dw+ Bu (2.7e)

A, B,C, B, 0 0 Xp W ,
0 A, | *P=losB)| BB *T x| ¥T|w] @

The system s.ates x

A=

p are controllable from u(Y) if the number of poles minus the

number of zeros is the same for each individual actuator’s transfer function.

Remark 1: Note that full controllability of the augmented-system state vector x is

not guaranteed under the conditions of the theorem.

Remark 2: The conditions of the theorem are always met for first order dynamic
actuators, (assuming no direct input/output “feedthrough” for the

actuators), since each actuator will have one pole and no zeros.

223



Remark 3: As long as the original system states x, are controllable through some
minimum set of actuators meeting the criteria of the theorem above, then
controllability of x, will be maintained with the addition of actuators of

any order and any number of transfer zeros.

Remark 4: Finally, note that the usefulness of the theorem stems from the fact that
by meeting certain mildly restrictive conditions, the actuator dynamics
can be guaranteed not to destroy controllability of the original system

states, regardless of the pole/zero locations of the plant.

2.2 Adding Sensor Dynamics

Next the system (2.5) is augmented to include stable, observable, controllable

sensor dynamics of arbitrary order.

Xs = AgXg + B{Mpx,+viy),  (A,,B) controllable (2.8a)
z=Cx,+Voy, (A,C,) isobservable, x,e R™ (2.8b)
Re[A(A)]I <0, i=1{(1,2, -+ ng} (2.8¢)

Figure 2.2 presents schematic representations for actuator models of varying degrees of
complexity; Figure 2.2a represents the non-dynamic sensor, while Figure 2.2b represents
the general model for a dynamic sensor with white noise. Note from both eqn (2.8) and
Figure 2.2b that (similarly to the case of actuator dynamics), adding sensor dynamics
leads to the possibility of both sensor input noise and sensor output noise. The iy
sensor’s input noise (v;,); is filtered by the dynamics of the i, sensor, while the output
noise (v,,); is purely additive with the sensor output. Both types of noise are assumed

possible in our development. .
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The fully augmented system equations have the following form:

X =Ax +Bu + Dw
y=Cx

z=Mx +v

T T ,T T T (T T T .,T,T
]s y =[yp’f]’w :[wfywu,vin]a v

00 A, B,C, 0 C, 00
D=|0 B, 0| ,A=| 0 A, 0|, C=
0

0 B BM, 0 A

B=|B, V=V, A, W=

U v,

W U
. M =[00C,]

The response y,(s) of the plant to the input f(s) is given by

Yp(s) = Hy(s)f(s)

where

H,(s) = C,(sI-A)'B,,.

the input u(s) is given by

Mx(s) = H(s)u(s) ,

where

H(s) = M(sI-A)"!B.

Finally, the response z(s) of the sensors to an input Mx(s) is given by
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(2.9a)

(2.9b)

(2.9¢)

0 C 0:| or C =[CQ0]

(2.10a)

(2.10b)

is the plant transfer function. The response Mx(s) of the actuator/plant system (2.9) to

(2.11a)

(2.11b)



z(s) = Hy(s)Mx(s) , (2.12a)
where
Hy(s) = C,(sI-A,) B, (2.12b)

is the transfer function for the sensor dynamics. Minimal systems are controllable and
observable. Thus, given minimality of the plant/actuator system [(A,B) controllable and
(A,M) observable], then measurability of the full augmented system is guaranteed

[(A ,M) observable] if there are no pole/zero cancellations between H(s) and H(s).

2.3 Defining the Cost Function

With the properties of the augmented system established, optimal control design for
the augmented system is now considered. Recall that the standard LQG cost function
(2.3) for the unaugmented system (2.1) includes a penalty on the output regulation error
y(t), as well as a penalty on the control energy u(t). However, in the augmented system
(2.5), while the actuator command is given by u(t), the actuator response f(t) (contained
in the augmented output vector y) is distinct from u(t) due to actuator dynamics. A true
measure of control energy is more appropriately stated in terms of a weighted sum of the
variiaces of f(t) rather than of u(t). It can readily be shown, however, that even in the
presence of a weighting on the actuator outputs, f(t), some nonzero weighting on the
actuator inputs u(t) is necessary to avoid an infinite gain solution to the optimization
problem. For this reason, and in view of the relation of f(t) to the design goals as

discussed above, minimization of cost functions of the form
Vv =E_ [llymhs +lu@lid] (2.13)

and
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Q =diag[Q,.Q,]., Q>0 (2.14)

provides a stable optimal closed-loop solution.

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS
3.1 Closed-Loop Input/Output Cost Analysis

In order to write the expressions for the closed-loop input and output costs, it is first
necessary to put the fully augmented system, under closed loop steady-state optimal

state-estimate feedback control, in the following state space form:

x(t) = Ax(t) + Dw(t) (3.1a)
y(t) = Cx(t) (3.1b)
V=E.V,®, V0 =y ©®Qy®, (3.10)
where

X' =TT, yT =" wi=wT v (3.1d)

A B8G DO C 0 0 0 W U
A=lrm a+BG-FM|"P=|0 F|'C=l0 6| Q=]0 r|-W=|y* ,|C1®
G=-R'BTk, 0=KA +ATK —KBR™'BTK +C"QC (3.1f)

F =[PMT+DUIV™!, 0=[A-DUV~'MIP + P[A-DUV M]T (3.1g)
~-PMTv-IMP + DWDT - DUV-UTDT

For the system (3.1) the output costs V7, defined by
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VY = (1/2){E .3V /3yy)y;)
are calculated as follows [2]
VY = [CXCTQl;
where X is the steady state covariance satisfying
0=AX+XAT + DWDT

and where the output costs satisfy the cost decomposition property

l’ly
YVI=V.
=1

The input costs are defined by
V¥ = (1/2){E .0V Jowy)w,}
and are found from [2]
V¥ = [DTSDWI;
where S satisfies

0=ATS + SA + CTQC

and where the input costs also satisfy the cost decomposition property

Ny
EVlw=V .

(3.2a)

(3.2b)

(3.2¢)

(3.2d)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The input and output costs represent the in situ contributions that the noise inputs

and the system outputs make in the cost function. We may also wish to know the amount

by which the cost function will be reduced if a noise input is eliminated. This amount,

AV, is defined as

229



AViw = V - VRi

34

where Vy,; is the value of the cost function after the iy, noise input is eliminated, (but the

controller is not redesigned) and AV;" is the cost reduction due to eliminating w,. A

positive value for AV;" indicates that elimination of the i, input will reduce the cost,

while negative AV," indicates that a cost increase will follow noise elimination. It was

shown in [1] that the AV¥ may be positive or negative in the presence of noise

correlation. Partitioning the matrices W and D facilitates direct solution for the cost

reduction [2], yielding
AViw = 2Viw - di‘SdiWii B
The closed-loop covariance X may be written

P+N N

X=I N N

where P satisfies eqn (3.1g) and where /V satisfies:
0=N(A+BG)T+ (A+BG )N + FVFT

Also, S has the following form

K+L -L
~L L

where K satisfies eqn (3.1f) and where L satisfies

0=L(A-FM) +(A-FM)TL + GTRG

(3.5)

(3.9)

(3.7

(3.8)

(3.9)

For notational convenience the steady state covariance X is partitioned as follows:
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X, X2 Xi3
X =[P+N]1=|X5 X, X,
X5 X5 Xs

(3.10)

Using the notation of (3.10) and the special structure of the closed-loop system matrices

in eqn (3.13) we write the following expressions for the output costs

Vlyp = [CpoCg‘Qp]ii i=1, --- n)'p

vi=[c,X,cIQ,); i=1, - nu
VE=[GNGTR]; i=1,nu
and for the input costs
V¥ =[DT(K+L)DW]; i=1, -+ nw
V= [DVKALDW Lgsinwsi =1, ©*° nz
vy = [FTLFV;, i=1, - nz

and the input cost reductions

AV = [DTK+L)DW - DTLFU T i=1, -

AV = [DT(K+L)DW - DTLFUT)

AV = FTLFV ~FTLFV —-FTLBU ;. i=1, -
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nw+i,nw+i 1= l’ ne

nw

* nz

* Nz

(3.11a)

(3.11b)

(3.11¢)

(3.12a)

(3.12b)

(3.12¢)

(3.13a)

(3.13b)

(3.13c)



3.2 Dynamic Actuator Effectiveness Values

Now that the closed-loop input and output costs have been determined for systems
with dynamic sensors and actuators, it remains to use the CIOCA results to define
expressions which reflect the effectiveness of each sensor and actuator in the cost
function. This section defines the effectiveness values for dynamic actuators. The
approach taken in [1] and [2] for non-dynamic actuators was to subtract the contribution
the iy, actuator’s noise in the cost function from the contribution of its control signal, and

to label this difference the "effectiveness" of the iy, actuator, V. That is,
Viact - Viu _ AV‘W (314)

This subtracts the "bad" from the "good" contributions of the actuator to measure its
effectiveness. The results of applying (3.14) to sensor and actuator selection for a range
of small and large scale examples in [2], [3], [4], [17] and [18] have demonstrated the

utility of this approach.

Extending the definition (3.14) for applicability to systems with dynamic actuators,
we proceed as follows. In (3.1) there are two noise sources associated with each
actuator: command noise, w,, which is filtered by the actuator dynamics; and output
noise, wy, which is additive with the actuator output. Thus, the noise contribution

associated with the iy, actuator is given by the sum of AV;" and AV;*".

The beneficial control cost for each actuator is not immediately evident. First,
recall that it is the actuator output £(t), not its input u(t), which drives the system. Next,
note that the contribution of the iy, actuator’s output in the cost function, Vif, includes the
effects of noise wy;. That is, even in the open loop (u=0), Vf#O for [W,];; >0 with
dynamics. Hence, to define the beneficial (control) portion of Vif it is necessary to

subtract the portion of Vif which is due to noise. This can not be accomplished exactly,
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since the actuator command u(t) and the command noise w,(t) are correlated for t > 1.
An approximation is obtained, however, by solving for Vif when u =0 (that is, in the
open loop). We define the contribution of w; to Vi and the contribution of u; to V{ as

follows, using the open loop covariance of the actuator states X,:

VY = [CX,CTQ.l; (3.152)
and
V" = V- (VY = [C(X—X)CT Qi (3.15b)
where X, solves
0=AX,+X,AT+B,WB]T. (3.15¢)

Finally, the input costs and the decomposition of the output cost Vif are combined in

an effectiveness formula for dynamic actuators which is motivated by the results of [1]

and [2]:
V= [V - AV - AV (3.16)

Note that in the absence of command input noise, [Vif]W and V,** are both zero. Also, in
the absence of actuator dynamics, f;(t) is equivalent to u;(t). Thus the expression (3.16)
reduces to the original effectiveness formula of {1] in the absence of actuator dynamics.
Note also that (3.16) is applicable whether or not the actuator noise signals are correlated
with other noise sources, and it is applicable to systems with actuator dynamics of

arbitrary order.

3.3 Dynamic Sensor Effectiveness Values

Unlike the actuator noise, (which has a direct path to the output, independently of

the conrollers influence) the noise associated with sensors reaches the system only
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through the controller. Since the gains in the Kalman filter of the LQG controller
represent an optimal trade-off of each sensor’s (beneficial) measurement information
versus the (performance degrading) impact of its noise, then a AV of large magnitude is
indicative of a highly effective sensor. That is, the fact that a sensor’s noise is being
allowed 1o heavily affect the cost means that its measurement information is even more
critical to performance. For this reason, the following effectiveness formula for non-
dynamic sensors, generalized to accommodate the possibility of noise correlation, was

presented in [1]:

A v

For dynamic sensors there are two possible noise inputs associated with each sensor.
As in the non-dynamic case, both noise inputs reach the system dynamics through the

Kalman filter. Thus a straightforward extension of (3.17) to dynamic sensors is

V= AV + AV . (3.18)
Note that this formuia is applicable in the presence of sensor dynamics of arbitrary order,
and applies whether or not any of the noise sources are correlated with one another.

This section concludes with the suggestion that (3.16) and (3.18) provide effective
measures of th2 contribution of each actuator and sensor in a closed loop optimal LQG

control (with sensor and actuator dynamics properly included).

4.0 SELECTION OF DYNAMIC ACTUATORS FOR SCOLE

In this section the actuator selection problem is solved for a model of NASA’s
SCOLE (Spacecraft Control Laboratory Experiment) system. The SCOLE configuration

consists of a flexible antenna suspended from the Space Shuttle cargo bay by a 130 ft.
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flexible beam (see Figure 4.6). The effectiveness values for proof mass actuators
(PMA’s) located along the beam are calculated and plotted versus position for both
dynamic and non-dynamic actuators in order to evaluate the dynamic actuator selection

method and to determine the effect of actuator dynamics on our results.

4.1 PROBLEM DEFINITION

A certain 2-dimensional SCOLE model includes four flexible modes and no rigid
body modes [15-18]). Approximate open-loop mode shapes for the four flexible modes
are presented in Figure 4.7, and the results of an open loop modal cost analysis are
presented in Table 4.2. A detailed discussion of the model development is given in [16]
and [18]. The two sensors retained in the model (using the CIOCA method of selection
for non-dynamic sensors) are angular position and rate measurements located at the
center of mass of the reflector [18]. Since there are no accelerometers presents, then the

sensor and actuator noise is uncorrelated. Noise intensity data for the sensors is given in

Table 4.3,

The set of admissible actuators includes both a control moment gyro (CMG) located
at the reflector center of mass and a set of PMAs distributed along the flexible beam. The
actuator selection problem is to determine the optimal location for two PMA devices
along the beam. To this end, the admissible set of PMAs was defined as 20 actuators
spaced at distances of 6.25 feet apart on the 130-foot beam from a point 10.75 feet above

the shuttle end of the beam to a point 129.5 feet from the shuttle. The PMA locations are
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Figure 174: SCOLE Configuration
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Tahle 4.2: 2-Dimensional SCOLE Elastic Modal Cost Analysis

Mode# | Frequency (Hz) | Modal Cost | Percent Total
i J289E+00 S47E+01 A66E+02
2 A64E+O1 626E+01 S33E+02
3 A97E+01 105E-01 89SE-01
4 J24EHRL JROE-04 153E-03
5 23TE+D2 201E-06 JAT1E-05
6 AROE+O2 W092E-08 S90E-07
7 SERNE~O2 ATOE-09 ANOE-08
8 {IGEA02 SeE 10 431E(W
Q HISE+N3 TANE-1] AISE 10
1 ARGESNS J42E-N AZIE- 1O
1 ATSELO3 ‘ 322E-12 174E-11
12 2ASELNS poONARELR J2ELD
13 239E+D3 MAE-13 207E-12

Table 4.3; Noise Specifications for SCOLE Actuators and Sensors

Aciuators
Dynamic Noise Noi~e
Tipe Ruange fatenity Type fatensiy
PMA 10 1b 0001 (bt Accelerometers v, = DOZS (dcg’seczlz
CMG  10°fi-lb 10,000 (f1-16)  Angular Pos tion 10°* (deg)?

[§. ) (dcg/scc)z
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thus selected by evaluating the relative effectiveness of each of the 20 PMA locations.

4.2 RESULTS FOR NON-DYNAMIC ACTUATORS

The PMA selection problem for non-dynamic actuators was solved first, for later
comparison with the dynamic actuator selection results. In all cases (dynamic and non-
dynamic) the actuator effectiveness values are calculated following controller design
which achieves a specified output variance and minimizes the amount by which the
actuators exceed their specified variances. This type of controller is designed by an
iterative selection of the control and output weights using the Output Variance
Assignment (OVA) algorithm (DeLorenzo and Skelton, [3]). The variance specification

for each actuator was equal to 10 times the intensity of its noise (see Table 4.3).

The actuator effectiveness values based upon standard Closed Loop Input/Output
Cost Analysis (CIOCA) [2] for non-dynamic actuators are presented in Figure 4.8. The
figure portrays PMA effectiveness results for four different controllers, each achieving a
different steady-state line-of-sight (LOS) error variance. The results provide a vivid
illustration of how the controller objectives can profoundly influence the actuator
selection results. For lower gain controllers (lower LOS error) the theory determines that
the upper tip is the most desirable PMA location. However, as the gain increases
(controller designed for smaller LOS error) the center of the beam becomes the optimal

location.

The results of Figure 4.8 are readily explained via modal analysis. The mode shape
figures for the four flexible modes retained in the 2-dimensional SCOLE model were
presented in Figure 4.7. Recall that mode #1, which accounts for 46.6 percent of the
open loop modal cost, has a maximum amplitude at the reflector-end tip of the beam (i.e.,

at 130 ft.). Mode number #2, which accounts for 53.3 percent of the open loop modal
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cost, has a maximum amplitude near the 90 ft. point. And mode #3, which accounts for
only approximately 0.1 percent of the open loop modal cost, has a peak amplitude near

the center of the beam.

Next note from Figure 4.8 that as the gain is increased in order to achieve a smaller
steady state LOS error variance, the most effective location for PMAs shifts from the tip
of the beam to the midpoint. This corresponds to a shift from the peak of mode #1 to the
peak of mode #3. The shift occurs even though with higher gain the noise in the PMAs
near the beam midpoint becomes the most detrimental to performance (Figure 4.9). In
fact, Figure 4.9 indicates the reason for the shift in optimal PMA location: with higher
gain the third mode becomes the least damped by the control of the CMG, and becomes
therefore a significant mode to be controlled by the PMAs. Figure 4.10 and Table 4.4
indicate the motion of the closed-loop eigenvalues from their open loop locations under

varying levels of gain (output performance).

Since the control cost of cach PMA (V® = E _ru?) is equal to its effectiveness value
V2 minus the cost contributicn of its noise, V;”, then it is clear from Figures 4.8 and 4.9
that the PMAs are being used primarily to control mode #3 (i.e., near the middle of the
beam). However mode #3 is the most lightly damped mode in the closed loop. This is
true in spite of the fact that in all cases the input variances of both the CMG and PMAs,
when normalized by their variance specifications, are of like order of magnitude (see

Figure 4.11).

The results demonstrate the interesting result that while the PMAs are being used at
a level similar to the CMGs (in relation to their specified variance levels), they
nontheless make a small contribution to the closed-loop modal damping. This claim is
verified by deleting all PMAs from the system and again using OVA to achieve a

specified LOS error of 0.1 (arc sec)?, and comparing the resulting closed-loop modal and
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Table 4 4:  Modal Characteristics of |A+BG] as a Function of Output Performance

Open  .1015 .10 095 09 10 (degy’
Loop (dcg)z (dcg)2 (dcg)2 (no PMAs)

,(r/s) 1.8 314 314 314 314 3.135
& 005 028 027 0255 015 .01
1, (sec) 11 1.4 11.8 125 12.74 319
w,fr/s) 10.3 56. 62 93 160. 63
%2 03 675 63 6926 702 o8
T.(seC) 19.4 026 (24 015 o9 023
ah(r/s) L 9. 29 28.8 288 189
3y 008 0217 0185 011 X9 016
T;(seC) 6.45 1.6 1.87 116 395 216
wy{r's) 73 774 77. 77. 77. 773
Ca 005 0065 007 0072 0052 0068
Ty(sec) 2.56 20 1.86 1.8 2S5 249

Steady-State
Normalized

CMG -- 46.04 60.6 %26 591.1 65.2
Vanance
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performance data with that obtained from a full set of PMAs and an output variance of

0.1 (arc sec)2 (see Table 4.4).

4.3 RESULTS FOR DYNAMIC ACTUATORS

In this section we add actuator dynamics to the SCOLE model and then re-solve the
actuator selection problem solved above. The actuator dynamics are given in NASA’s
original SCOLE document [15] to be first-order with a time constant of 0.1 seconds.
That is, for each actuator (both PMA and CMG) the response of the actuator fi(t) to its

input signal u,(t) is governed by
fi(s)/uy(s) = [1/(.1s+1)} (4.7a)
or

f. = —10f, + 10u; . (4.7b)

There are several possibilities for the characteristics of the white noise associated
with the actuators; white noise may be an input to (and thus be filtered by) the actuator,
or it may be additive with the actuator ourput (thus unfiltered), or both. In this example
four different actuator noise models are considered. Recalling that the non-dynamic
actuators had additive white noise with intensity W, the following noise cases were

studied for dynamic actuators:
1. white actuator input noise of intensity W, = W;
2. white actuator output noise of intensity We=W;

3. both input and output noise, each white and of intensity W,
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4. both input and output noise, each white and of intensity W/2.

The sensors are assumed non-dynamic (without phase lag).

First we examine the effect of actuator dynamics on the maximal theoretically
achievable accuracy. From [3], the lower bound yi' on the steady-state variance of the iy,
output is given by

y; =[CPCT};, i=1,..,ny. (4.8)

The values of the lower bound on the LOS error for the fourth-order 2-D SCOLE model
under study were calculated for the four different actuator noise cases listed above, as

well as for the non-dynamic actuator model examined earlier. The results are shown

below.

Table 4.5: Maximal Accuracy for Different Actuator Noise Cases

Noise Case | No Dynamics | W,=W | W=W | W=W =W | WeW =W/2

Max. Acc. 086921 0691 086921 10072 07926

(arc sec)2

From Table 4.5 it is clear that the addition of actuator dynamics along with
retention of the white noise input to the system states (actuator output noise only, W=W)
does not change the theoretical maximal accuracy; that is, y‘ is equal for the non-
dynamic and the W¢=W case. Also from the table, filtering of the actuator noise by
passing it through finite actuator dynamics clearly improves the maximal accuracy.
Finally it is noted that for case (3), Wy =W, =W, the minimal LOS error is greater than
that obtained by all but one of the controllers in the non-dynamic case. Thus for

purposes of comparison only cases (1), (2) and (4) are studied in further detail.
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For each of the three actuator noise cases a controller was designed (using OVA)
which assigned the steady state LOS error variance to 0.1 (arc sec)? and minimized the
sum of the normalized actuator variances among those actuators whose variances exceed
their specifications (normalized variances greater than unity). For each final controller,
the dynamic actuator effectiveness values for the PMAs are plotted in Figure 4.12 versus

the actuators’ position along the 130 ft. flexible beam.

For each of the noise cases the most effective actuator location is toward the
reflector-end of the beam, with the highest effectiveness values corresponding to
actuators located at the beam tip. Recalling the mode shape figures for the open loop
flexible modes, the results in Figure 4.12 indicate that the PMAs are used by the optimal
controller primarily for control of mode #1, which accounted for 46.6 percent of the open
loop modal cost. It is interesting to compare Figure 4.12 with the plot of effectiveness
values for non-dynamic actuators (Figure 4.8); note that the most effective non-dynamic
actuators for the controller which achieved LOS error = 0.1 (arc sec)2 were located near
the center of the beam (70 ft from the shuttle). Hence, the optimal beam locations for
PMAs in controllers which are achieving the same output performance are affected by

the actuator dynamics.

CONCLUSIONS

The Closed-Loop Input/Output Cost Analysis (CIOCA) method of sznsor and
actuator selection (SAS) has been extended for application to systems with dynamic
sensors and actuators -- that is, systems in which the response of the sensors and
actuators to their inputs is not instantaneous but governed by deterministic dynamics.
The extended SAS method is applicable to systems in which the deterministic sensor and

actuator dynamics are of arbitrary order. Application to simple numerical examples
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demonstrates the utility of the SAS method. The examples also demonstrated that even
uniform sensor dynamics can affect the optimal selection of sensors. Application of the
actuator selection method in detail to NASA’s SCOLE space structure demonstrated that

even uniform actuator dynamics can affect the optimal selection of actuators.
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Proof of Theorem 1
Let o=(nx +nx,). The composite system (2.7¢) has a controllability matrix

W, e R¥*™ of the following form

\i4

c=

W 0 B,C,B, (ApBoCaBa+BOCaAaBa)
WC2 Ba AaBa AZBa

(A ?B,C,B+ASB,C,A, B+ - - +B,C, A B,

AT, (A.1)

Now noting that C,AB, = M; is the ith Markov parameter for the system of actuator
dynamics (2.7¢,d), W, may be rewritten

W = [0 BM, (A, B;Mg+BM)) (AZB,M+A B M +BM,) - - -
- (AFTIBMAASTB M+ - - +B My )] (A.2)

The columns of W span the controllable subspace of the composite system. Linear
independence of all the rows in W, implies full controllability of the composite system.
However, controllability of the original sy stem states, Xp, requires only that the columns
of W, span the state space for x,. This in turn will hold if and only if the matrix W has

rank nXp.

The proof of the Theorem begins with the proof that (A.3) implies (A.4):
{detM #0, M;=0, i=0,1, .., k-1} (A.3)
rank[W ] = n,, (or range space of W has dimension ) A
Note that the last block of W has the form
Wi = (AS BoM+AS B M, + -+ + BM, ) (A.5)

Now let k < a-2 be the index of the first nonzero Markov parameter, M,. (In this case
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the first k+1 blocks of W, are zero.) Next, use is made of two results from linear

algebra ("R [K]" denotes "range space of K"),

{detK#0} = (RJK]=R[]]} (A.6a)

RJ+K]cR[J}1+R[K] (A.7b)

(where "c" means "is contained in") to demonstrate the following results which hold

when M, is nonsingular

R(B,] =R [BM,] (A.8)
R[B, ApBo] =R[B,]+R [ApBo]
= R[B,M,] + R [A,B,M]
=R [B.M] + R[ABM; + B,M;,,-BMy,]
© R [BoM,] + R [ABMy + BoMy, 1] + R [BM. ]
= R[B,My] + R [A,BoMy + BoM, ]
" R[B, A,B,] € R [B,My A B,M, + BM,, ] (A9)

Eqns (A.8) and (A.9) lead by induction to the main result

R[B,AB, -+ AJ™* Bl cR([BM; ABM, +BM,, -

AZ2B M, + -+ B;My_,]
that is,

R[B,AB, -+ AZ* B ] cR[W,]. (A.10)
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Condition (A.3) leads to (A.10). Thus, given (A.3) together with (Ap,Bo)
controllable, the columns of W, are guaranteed to span the nx;-dimensional state space

for x; as long as
o—k-22=nx,~1.
that is, as long as
k<nx,-1. (A.11)
In fact, the index k of the first nonzero Markov parameter for the system (2.7) will

always satisfy (A.11). To show this, simply note that by observability of (A,,B,), the
observability matrix W, for (2.7) has full column rank:
rank(W_,) = nx, (A.12)
From (A.12),
{(W,,B,=0} = (B, =0} = {Contradiction of (A,,B,) controllable}  (A.13)
Thus,
Wo,B, = IMI M, . ML 1T 20 (A.14)

and so the validity of (A.11) is guaranteed for (2.7) completing the proof that

([(Ap,B,) controllable] & My # 0, M; =0,i=0, 1, ..., k=1]) (A.15)

= [xp controllable u}

The usefulness of (A.15) stems from the fact that by meeting certain mildly
restrictive conditions the actuator dynamics can be guaranteed not to destroy

controllability of the original system states x,, regardless of the pole/zero location for the

plant.
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It remains to prove the equivalence of the condition (A.3) and the requirements on
the individual actuators’ numbers of poles and zeros. First, note that since each actuator
is a single input, single output (SISO) system, then the Markov parameters M; for the
lumped actuator dynamics (2.7) are diagonal matrices of the following form:

Mi = dlag [mli, My;, m3i, cery mnui] (A16)

where m;; is the (scalar) iy, Markov parameter for the j,, actuator. Thus the condition
(A.3) is met if and only if the index i of the first nonzero markov parameter is equal

among all the actuators.

The input/output transfer function for any ny, order SISO system has the form:
T(s) = (CpoyS™ e aS™ 24 -+ +C)(s™dy s 4+ - - +d,) (A.17)

The scalar Markov parameters m; for the SISO system with transfer function (A.20) may

be shown to be given by:

m, = Cn1

my =cp 5 —dyn,

Ny =Cq3—dpp ny—d;_ny
: : (A.18)
Ny, =Cy— dl _dan = —dn-lnn-—2

From (A.18), n; is the first nonzero Markov parameter for a system when the
number of zeros in its transfer function is

z=n-i-1 (A.19)

Letting n; and z; equal the number of poles and zeros for the j,, actuator, respectively,

(A.19) yields the conclusion that
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(det M #0,M,=0,i=0, 1, .., k-1} &= ((072) = (0;=2) V 1j,€ (1,2,....n0)}(A.20)

Thus it is concluded that

{(nj-z) = (n—z) V i,j,€(1,2,...n0)} = {x; is controllable u}. (A.21)
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